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Abstract. The KNΛ and KNΣ coupling constants have been calculated in the framework of the Chiral
Bag Model(CBM). We find −3.88 ≤ gKNΛ ≤ −3.67 and 1.15 ≤ gKNΣ ≤ 1.24 by taking into account
pseudoscalar mesons (π,K) and vector mesons (ρ, ω,K∗) field effects. Particularly, it is shown that vector
mesons make significant contributions to the coupling constants gKNΛ and gKNΣ . Our values are existing
within the experimental limits compared to the phenomenological values extracted from the kaon photo-
production and kaon-nucleon scattering experiments. Also, form factors are suggested for the πNN , πN∆,
KNΛ and KNΣ couplings.

PACS. 13.75.Jz Kaon-baryon interactions – 14.40.Aq π, k, and η mesons

1 Introduction

The kaon physics has been consistently investigated in
the intermediate energy nuclear physics, which ranges
from simple processes like the kaon-nucleon scattering
or the kaon photoproduction on a nucleon to the spec-
troscopy and structure of hypernuclei. The most funda-
mental coupling constants in the kaon-nucleon physics
are the KNΛ and KNΣ coupling constants. The extrac-
tion of precise values for gKNΛ and g

KNΣ
is not yet al-

lowed due to the limited set of data, while the πNN cou-
pling constant g

ΠNN
is determined accuratively through

either the nucleon-nucleon scattering or the pion-nucleon
scattering experiment. Over the years, most analyses of
the kaon photoproduction on a nucleon have focused on
the two processes γp → K+Λ and γp → K+Σ0. There
have been many attempts to determine the coupling con-
stants g

KNΛ
and g

KNΣ
from these kaon photoproduction

[1–5]. Within a phenomenological approach, Adelseck et
al. [2,3] extracted the coupling constants by performing
a least-squares search similar to that of Thom’s [4]. How-
ever, these results turned out to have large uncertainties,
−1.29 ≥ g

KNΛ
/
√

4π ≥ −4.17, due to the simultaneous de-
termination of many other unknown coupling constants.
Also, to theoretically reproduce the experimental kaon-
nucleon scattering cross-section, one usually calculates
the contributions from the one-boson exchanges, the reso-
nances in the s-channel, such as the Λ and Σ, and the next
to leading two meson exchanges [1]. These involve many
phenomenologically undetermined coupling constants so
that it seems a formidable task to determine the coupling
constants related to the kaon separately. Therefore, it is
necessary to explore theoretical predictions because of un-

certainties and difficulties in extracting the precise values
for these coupling constants from the experiments.

At present, the quantum chromodynamics(QCD) is
believed to be the basic theory of the strong interac-
tion. The MIT bag model [6], soliton model [7], and
skyrme model [8] are amongst the best known phe-
nomenological models of QCD. Deriving from QCD, by
functional-integral methods, the phenomenological models
of hadrons, Cahill et. al [9] showed that all sorts of meson-
quarks interactions, e.g., the interactions with π, ρ, ω, etc.,
are self-contained in the theory. The chiral soliton [10–12]
and chiral bag models [13,14] which have been studied by
many groups are based on the σ model. The soliton or
bag excitations provide the baryons, whose masses are in
the GeV range. Therefore, it seems reasonable to include
in the theory also vector mesons, like the ω, ρ and K∗,
whose masses are lower than the masses of the baryons.
The interesting outcome is that the introduction of vector
mesons by itself stabilizes the chiral soliton [15] and chiral
bag [16] models. Also, there are some arguements that the
quartic term in the Skyrme model represents the degree
of freedoms of the ω−meson [15].

Araki [17] calculated the values of gA, gπNN and µN
in the framework of the nonlinear chiral soliton model. As
a result, they showed that it gave too a large gA and too
small nucleon magnetic moments, and the introduction of
the ω−quark interaction was able to give an overall agree-
ment of gA, gπNN and µN . Recent calculations in the chi-
ral bag model (CBM) provided somewhat reasonable de-
scriptions of the nucleon electromagnetic(e.m.) form fac-
tors [18]. However, these results show an irreconcilability
between the proton magnetic and electric form factors;
i.e., better results for the magnetic form factors induce
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less satisfactory results for the electric form factors. The
CBM with vector mesons(CBMVM) improves remarkably
the theoretical curves of nucleon form factors as well as
the values of nucleon magnetic moments and nucleon e.m.
radii [19]. Also, Theberge et al. [14] calculated the mag-
netic moments for all members of the JP = (1/2)+ octet
baryons (n, p,Σ±, Λ,Ξ−,0) including the strange baryons
in the framework of the CBM, and they showed excellent
agreement with data within the 10% level. Therefore, one
can make use of the CBM to analyze the hyperons (Σ,Λ).

The aim of this paper is to calculate the coupling con-
stants gKNΛ and g

KNΣ
in the framework of the CBMVM.

We analyze the hadronic πNN coupling constant at first,
and then, we calculate g

KNΛ
and g

KNΣ
using extension

from SU(2) CBMVM to the SU(3) and taking into account
the vector mesons(ρ, ω,K∗) as well as the pseudoscalar
mesons(π,K). The quark-meson coupling constants are
determined by fitting the renormalized πNN coupling
constant. Our predictions are compared with the values
extracted from phenomenological analyses and other theo-
retical QCD calculations. Also, form factors are suggested
for πNN , πN∆, KNΛ and KNΣ.

2 Interaction lagrangians containing vector
mesons

The Lagrangian containing vector mesons can be derived
by a local gauge transformation of the CBM Lagrangian
given by Kalbermann and Eisenberg [13], i.e. ρ-mesons are
coupled to the SU(2) isospin and ω-mesons are coupled to
the U(1) baryon number. Therefore, the minimal coupling

∂µ −→ ∂µ − i
2gv(τ · ρµ + ωµ) (1)

induces the effective Lagrangian

L= q̄iγµ
(
∂µ −

i

2
gvτ · ρµ −

i

2
gvωµ

)
qΘ

V
−BΘ

V
− 1

2
q̄q∆

S

+ q̄γµ
1

1 + g2
ππ

2
[gπγ5τ ·Dµπ − g2

πτ · (π ×Dµπ)]qΘ
V

+
1
2

1
(1 + g2

ππ
2)2

Dµπ ·Dµπ

− 1
2

1
(1 + g2

ππ
2)
m2
ππ

2 − 1
4
ρµν · ρµν +

1
2
m2
ρρ

µ · ρµ

− 1
4
ωµνωµν +

1
2
m2
ωω

µωµ

+
3gπg2

v

4π2
εµναβ∂µωνρα · ∂βπ, (2)

where

ρµν = ∂µρν − ∂νρµ + gvρµ × ρν ,
ωµν = ∂µων − ∂νωµ,
Dµπ = ∂µπ + gvρµ × π. (3)

B is the vacuum energy constant, Dµ is the covariant
derivative, gπ = 1/2fπ with the pion decay constant fπ,

and q(x) and π(x) are quark and pion fields, respectively.
ΘV and ∆S denote the volume and surface δ functions.
The last term in Eq. (2) is the so-called Wess-Zumino term
[20], which describes a certain anomaly processes contain-
ing π, ρ and ω. With this effective Lagrangian Eq. (2), one
can derive the interactions of the pion-quark and vector
meson-quark as

Lπqq = gπ

∫
d3xq̄(x)γµγ5τ ·Dµπ(x)q(x)ΘV , (4)

Lvqq = gv

∫
d3xq̄(x)γµ[τ · ρµ(x) + ωµ(x)]q(x)ΘV . (5)

The gauge coupling constant gv in Eq.(5) can be evalu-
ated by the ρ → 2π or ω → πγ decay processes, and sat-
isfies the well known Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin(KSRF) relation [21]. In general, the coupling
constant prefers the range of 4 ≤ gv ≤ 6 [22].

3 The πNB(B = N,∆) form factors

The πNN and πN∆ form factors can be obtained by eval-
uating the Feynman diagrams shown in Fig. 1 with La-
grangians (4), (5) and the Wess-Zumino term. The form
factor g

ΠNB
(kπ) associated with each diagram is given as

g
ΠNB

(krπ)
2M

= AgπU(krπ) +
gπ

144π2

∑
SS′{

g2
πU(krπ)

∫
dkπk

4
π

BSS′U
2(kπ)

ωπ(ωπ + ωNS)(ωπ + ωrπ + ωNS′)

+ g2
vU(krπ)

∫
dkvk

2
v

(
CSS′S

2
1(kv)

ωv(ωv + ωNS)(ωv + ωrπ + ωNS′)

+
DSS′S

2
0(kv)

ω2
v(ωv + ωrπ)

)
+ gπgv

∫
dkπ(kπ · k′v)U(kπ)

×
(

ESS1(k′v)
(ωπ + ω′v)(ωπ + ωNS)(ω′v + ωNS)

+
FSS0(k′v)
ω2
πω
′2
v

)
+

9g4
v

4π2

∫
dkvkv

(kv × k′v)(ωv + ω′v + ωNS)
ωvω′v(ωv + ωNS)(ω′v + ωNS)(ωv + ω′v)

× [GSS0(k′v)S1(kv) +HSS0(kv)S1(k′v)]
}

(6)

where krπ and ωrπ are the real pion momentum and energy,
kπ and ωπ are the virtual pion momentum and energy,
kv
′ = kv + krπ and ω′v =

√
m2
v + k′2v , and ωNS = mS −

mN . The suffixes S and S′ denote N or ∆. We have also
introduced vertex functions in the forms of

U(k)=N2

∫ R

0

r2dr
(
j0(kr)[j2

0(Ωr/R)− 1
3j

2
1(Ωr/R)]

−j2(kr)j2
1(Ωr/R)

)
(7)

S0(kv)=
1
2
N2

∫ R

0

r2dr[j2
0(Ωr/R)+j2

1(Ωr/R)]j0(kvr), (8)
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Fig. 1. Feynman diagrams for the
πNN and πN∆ form factors

S1(kv)=
5
3
N2

∫ R

0

r3dr j0(Ωr/R) j1(Ωr/R)j1(kvr). (9)

Here, Ω = 2.043 is obtained by the bag bound-
ary condition, j0(Ω) = j1(Ω). Coefficients in Eq.(6)
are given by A = 5/3(2

√
2), BNN = 250(800

√
2),

BN∆ = 1280(64
√

2), B∆N = 1280(1000
√

2), B∆∆ =
1280(800

√
2), CNN = 295(1088

√
2), C∆N = 1280(64

√
2),

CN∆ = 1280(1000
√

2), C∆∆ = 1600(800
√

2), DNN =
−180(200

√
2), EN = 100(60

√
2), E∆ = 32(30

√
2), FN =

160(100
√

2), GN = −64(−32
√

2), G∆ = 320(−24
√

2),
HN = 128(0) and H∆ = 0(30

√
2) for the πNN(πN∆)

form factors.
The πNN coupling constant is determined by the val-

ues of the πNN form factors at krπ = 0. The result of
numerical calculation for Eq.(6) at krπ = 0 is expressed by

[g
ΠNN

(0)]2

4π
= g2

πq

[
4.154 + 0.630g2

πq + 0.00641g2
v

+0.00933gπqgv + 0.00044g4
v

]2
. (10)

The numerical values of each term have been calculated
with R = 0.90fm. The renormalized πNN coupling con-
stant [g

ΠNN
(0)]2/4π = 14.3 can be obtained by sub-

stituting the vqq coupling constant gv = 5.21 and the
πqq dimensionless coupling constant gπq = mπ+/(2fπ)
with the experimental value of the pion decay constant
fπ = 93MeV . The last term of Eq.(6) denotes the Wess-
Zumino term in Fig. (1e) and the coupling constant
gπρω = 3gπg2

v/4π
2 can be evaluated by the ω → πγ

decay width. Using the current-field identity and the
limit of vector meson dominance, we obtain gωπγ/mπ =
3gπgve/4π2 = 0.306e/mπ, which is a little small compared
with gωπγ = (0.373 ± 0.018)e deduced from the ω → πγ
decay width(Γ = 0.89MeV ). Calculating the first order
diagram of Fig. (1a) with these coupling constants, we find
the bare πNN coupling constant [g

ΠNN
(0)]2/4π = 9.70.

Calculating the Feynman diagrams of the Figs.(1a) and
(1b), we find [g

ΠNN
(0)]2/4π = 11.4, which corresponds

to the result obtained without vector mesons. The reno-
malized πNN coupling constant [g

ΠNN
(0)]2/4π = 14.3 is

obtained by including vector meson effects of Figs.(1c)
∼ (1e). Calculating the Feynman diagrams of Figs.(1a),
(1a ∼ 1b) and (1a ∼ 1e), we obtain the πN∆ cou-
pling constant G3 = g

ΠN∆
(0)/2M=1.41/mπ, 1.65/mπ

and 2.01/mπ, respectively. Here, the last value, G3 =
2.01/mπ, reproduces the ∆πN decay width Γ = 122MeV ,
which is a little larger compared with the measured decay
width Γ = 115±5MeV . However, the πN∆ coupling con-
stant is a little smaller compared with the πN∆ coupling

Fig. 2. The renormalized πNN and πN∆ form factors. The
solid and dashed curves are the numerical results of the πNN
and πN∆ form factors, respectively, where we use the bag ra-
dius R = 0.90 fm. The dotted curve represents quark contri-
bution from diagrams (1a), (1b) and (1c) for the πN∆ form
factor. The dot-dashed curve shows meson contribution from
diagams (1d) and (1e) for the πN∆ form factor. The short
dashed and long dashed curves denote the πNN and πN∆
form factors, respectively, resulting from model(2) of ref. [25]

constant of the BL amplitude [23], G3 = 2.18/mπ, which
is detemined by fitting the process, p(γ, π+)n.

The numerical results of the πNN and πN∆ form fac-
tors with R = 0.90fm are shown in Fig. 2. The solid
and dashed curves are the numerical results of the πNN
and πN∆ form factors, respectively. The dotted curve rep-
resents quark contribution from diagrams (1a), (1b) and
(1c) for the πN∆ form factor. The dot-dashed curve shows
meson contribution from diagrams (1d) and (1e) for the
πN∆ form factor. We can see that the πN∆ form fac-
tor falls down a little faster than the πNN form factor.
The reason is that meson contributions to πN∆ coupling
are considerably large compared with those to πNN cou-
pling, where the meson contributions fall down gradually
faster than quark contributions as the momentum transfer
increases.

Our πNN and πN∆ form factors are less soft than
those determined from a microscopic model for πN scat-
tering [24,25]. The short dashed and long dashed curves
denote the πNN and πN∆ form factors, respectively,
resulting from model(2) of ref. [25]. The recent exper-
iments [26] for the reactions νµ + n → µ− + p and
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Fig. 3. Feynman diagrams for the
KNΛ and KNΣ form factors

νµ+p→ µ−+∆++ can provide empirical information for
the πNN and πN∆ form factors. Our πNN and πN∆
form factors are softer than the axial NN and N∆ tran-
sition form factors obtained by the Kitagaki et. al [26],
respectively.

4 The KNY (Y = Λ,Σ) form factors

The KNΛ(Σ) coupling constant can be calculated by ex-
tending from the basic doublet (u, d) to a triplet (u, d, s),
substituting the λi of SU(3) generators for the τi of SU(2),
and taking into account pseudoscalar mesons(π,K) and
vector mesons (ω, ρ,K∗). Therefore, Kqq and K∗qq inter-
actions are expressed by

LKqq = gk

∫
d3xq̄(x)γµγ5λ ·DµK(x)q(x)ΘV , (11)

LK∗qq = g∗v

∫
d3xq̄(x)γµλ ·K∗µ(x)q(x)ΘV . (12)

The KNΛ(Σ) form factor can be obtained by calcu-
lating the Feynman diagrams shown in Fig. 3 with La-
grangians (4), (5), (11), (12) and the Wess-Zumino term.
The form factor gKNY (krk) associated with each diagram
is given as

g
KNY

(krk)
2M

= AgkU(krk) +
gk

144π2

∑
SS′{

g2
πU(krk)

∫
dkπ

BSS′k
4
πU

2(kπ)
ωπ(ωπ + ωNS)(ωπ + ωrk + ωNS′)

+ g2
kU(krk)

∫
dkk

CSS′k
4
kU

2(kk)
ωk(ωk + ωNS)(ωk + ωrk + ωNS′)

+ g2
v

∫
dkvk

2
vU(krk)

(
DSS′S

2
1(kv)

ωv(ωv + ωNS)(ωv + ωrk + ωNS′)

+
ESS′S

2
0(kv)

ω2
v(ωv + ωrk)

)
+ gπg

∗
v

∫
dkπ(kπ · k∗v)U(kπ)

×
(

FSS1(k∗v)
(ωπ + ω∗v)(ωπ + ωNS)(ω∗v + ωNS)

+
GSS0(k∗v)
ω2
πω
∗2
v

)
+

9g2
vg
∗2
v

4π2

∫
dkvkv

(kv × k∗v)(ωv + ω∗v + ωNS)
ωvω∗v(ωv + ωNS)(ω∗v + ωNS)(ωv + ω∗v)

× [HSS1(k∗v)S0(kv) + ISS1(kv)S0(k∗v)]
}
, (13)

where k∗v = kv + krk, ω∗v =
√
m2
v + k∗2v and gk = 1/(2fk)

with the experimental value of the kaon decay constant

fk = 114MeV . The hadronic coupling constant, g∗v =
gv, can be inferred from the SU(3) symmetry assump-
tion. The suffixes S and S′ denote N , Λ and Σ having
strangeness 0 or −1 for the octet with JP = 1

2

+, and ∆
and Σ∗ having strangeness 0 or -1 for the decuplet with
JP = 3

2

+. Their SU(3) wave functions of three quarks can
be found in [27]. Coefficients in (13) are given by A =
−
√

3(1/3), BNΛ = −125
√

3(100), BNΣ = −640
√

3(500),
BNΣ∗ = −160

√
3(250), B∆Σ = −128

√
3(76),

B∆Σ∗ = −256
√

3(76), CNΛ = −525
√

3(270), CNΣ =
−1050

√
3(60), CNΣ∗ = −210

√
3(24), C∆Σ = −64

√
3(36),

C∆Σ∗ = −256
√

3(72), DNΛ = −125
√

3(100), DNΣ =
−640

√
3(500), DNΣ∗ = −160

√
3(250), D∆Σ =

−128
√

3(76), D∆Σ∗ = −256
√

3(76), ENΛ = −540
√

3(0),
ENΣ = 0(180), FN = −160

√
3(40), F∆ = −60

√
3(20),

GΛ = −64
√

3(12), GΣ = −108
√

3(32), GΣ∗ =
−48
√

3(−16), HN = −320
√

3(−24), IΛ = −128
√

3(0)
and IΣ = 0(216) for the KNΛ(KNΣ) form factors. The
last term in (13) denotes the Wess-Zumino term shown in
Fig. 3f, and the K∗Kω coupling constant can be evaluated
by the K∗ → Kγ decay width. Our value, GK∗Kω/mk =
3gkg∗vgv/(4π

2), induces GK∗Kγ/mk = 3gkg∗ve/(4π
2) =

0.859e/mk by the current-field identity [22] and the limit
of vector meson dominance. The relation [4] of the K∗Kγ
coupling constant to the decay width provides ΓK∗→Kγ =
9.8MeV

4π |GK∗Kγ |2 = 53MeV [28], which is within the mea-
sured decay width 50± 5MeV .

Substituting the fπ = 93 MeV , fk = 114 MeV , gv =
5.21 and R = 0.90fm into (13), we obtain

gKNΛ√
4π

= −3.77 and
gKNΣ√

4π
= +1.19

at krk = 0. The results in the range of 0.80 ≤ R ≤ 1.00 fm
are listed in Table 1. It is shown that the vector meson con-
tributions are larger than the pseudoscalar meson contri-

Table 1. The KNΛ and KNΣ coupling constants in the range
of 0.80 ≤ R ≤ 1.00 fm. The values in parentheses are for
the gKNΣ . Here, gv is determined by the renormalized πNN
coupling constant g2

πNN/4π = 14.3 for each bag radius

the bag radius R (the gauge coupling constant gv)
diagrams 0.80 fm(5.07) 0.90 fm(5.21) 1.00 fm(5.34)

(3a) −2.69(0.52) −2.69(0.52) −2.69(0.52)
(3b) −0.27(0.12) −0.24(0.11) −0.21(0.10)
(3c) −0.11(0.04) −0.09(0.03) −0.08(0.03)
(3d) −0.21(0.08) −0.19(0.07) −0.17(0.06)
(3e) −0.14(0.09) −0.13(0.08) −0.12(0.08)
(3f) −0.46(0.39) −0.43(0.38) −0.40(0.36)
sum −3.88(1.24) −3.77(1.19) −3.67(1.15)
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Table 2. The KNΛ and KNΣ coupling constants. Set I and II are the results extracted from the analyses of the kaon
photoproduction. III and IV are the results extracted from the analyses of the kaon-nucleon scattering. V is the Skyrme Model
predictions, and VI is a QCD sum rule predictions including the SU(3) symmetry breaking effects. VII is the present calculations
from the SU(3) CBMVM at the bag radius R = 0.90 fm. The signs of III and IV are not determined

I[2] II[29] III[30] IV[31] V[32] VI[33] VII(0.90fm)

gKNΛ/
√

4π −4.17± 0.75 −3.16± 0.01 3.73 3.53 −2.17 −2.76 −3.77

gKNΣ /
√

4π +1.18± 0.66 +0.91± 0.10 1.82 1.53 +0.76 +0.44 +1.19

butions. Particularly, the importance of the Wess-Zumino
term is obvious as listed in (3f) of Table 1. The values ex-
tracted from the kaon photoproduction [2,29] and kaon-
nucleon scattering experiments [30,31] are listed in Table 2
with our value and other theoretical predictions. Our val-
ues for gKNΛ and g

KNΣ
are existing within the experimen-

tal limits of the phenomenolgical values extracted from
the kaon photoproduction of [2]. Compared with the val-
ues extracted from the kaon-nucleon scattering, our gKNΛ
is very close to the extracted values while our gKNΣ falls
short of the extracted those. It should be stressed that
our results support the values extracted from the phe-
nomenologocal analyses, although they have large uncer-
tainties due to the simultaneous determinations of many
unknown coupling constants. In Fig. 4, we show the nu-
merical results for the hadronic form factors g

ΠNN
(kπ),

g
ΠN∆

(kπ), g
KNΛ

(kk) and g
KNΣ

(kk), where we use the bag
radius R = 0.90 fm. We can see that the KNΣ form
factor falls down considerably faster than the other form
factors. The reason is that the meson contributions are
relatively large while the bare quark contribution of the
Feynman diagram (3a) is very small compared with the
other form factors. Notice that the meson contribution
falls down considerably faster than the quark contribu-
tion as shown in Fig. 2.

5 Conclusion

Our calculations based on the SU(3) chiral bag model with
vector mesons contain two parameters, i.e. the bag radius
R and the quark-vector meson coupling constant gv. How-
ever, gv is determined by the renormalized πNN coupling
constant g2

ΠNN
/(4π) = 14.3 through the relation given in

(10). Accordingly, it can have a different value if value of
R varies. In this sence, we have (R, gv) as a free para-
metric set. Using the parametric values in the range of
(0.80 ≤ R ≤ 1.00 fm, 5.07 ≤ gv ≤ 5.34), we obtain
the value of the KNΛ and KNΣ coupling constants as
follows

−3.88 ≤ gKNΛ ≤ −3.67,
+1.24 ≥ g

KNΣ
≥ +1.15.

These values are comsiderably close to the phenomenolog-
ical those extracted from the kaon photoproduction and
the kaon-nucleon scattering, while other theoretical pre-
dictions fall short of the experimental limits. The reason
of these enhancements is actually the point that we take

Fig. 4. The renormalized πNN , πN∆, KNΛ and KNΣ form
factors. The solid, short dashed, dot-dashed and long dashed
curves represent πNN , πN∆, KNΛ and KNΣ form factors,
respectively, at the bag radius R = 0.90 fm

into account meson (π,K, ρ, ω,K∗) field effects, and the
Wess-Zumino term. It is again stressed that our results
support the values obtained from the phenomenological
analyses.
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